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Abstract. A treatment in a neighbourhood and at a point of the equivalence principle on the
basis of derivations of the tensor algebra over a manifold is given. Necessary and sufficient
conditions are given for the existence of local bases, called normal frames, in which the
components of derivations vanish in a neighbourhood or at a point. These frames (bases), if
any, are explicitly described and the problem of their holonomicity is considered. In particular,
the results obtained concern symmetric as well as non-symmetric linear connections.

1. Introduction

Usually in a local frame (basis) the gravitational field strength is identified with the
components of a linear connection which may be with or without torsion (e.g., the
Riemannian one in general relativity [1] or the one in Riemann-Cartan spacetimes [2]).
This linear connection must be compatible with the equivalence principle in a sense that
there must exist ‘local’ inertial, called also Lorentz, frames of reference (bases) in which
the gravity field strength is ‘locally’ transformed to zero. Mathematically this means the
existence of special ‘local’ basis (or bases) in which the components of the connection
vanish ‘locally’. Above the words ‘local’ and ‘locally’ are in quotes as they are not well
defined here, a usual fact for the physical literature [1], where they often mean ‘infinitesimal
surrounding of a fixed point of spacetime’ [2]. The strict meaning of ‘locally’ may be at
a point, in a neighbourhood, along a path (curve) or on some other submanifold of the
spacetime. The present paper deals with the first two of these meanings of ‘locally’, in
which cases the equivalence principle is considered.

The existence of (local) bases or coordinates in which the components of linear
connections [3, 4] vanish at a point [2, 4–8], along a curve [5, 8] or in a neighbourhood
[5, 7, 8] have been considered. But with very rare exceptions (see, e.g., [2]) in the literature
only the torsion-free case has been investigated. The present work, which is a revised
version of [9], generalizes these problems to the case of arbitrary derivations of the tensor
algebra over a differentiable manifold (see either [4] or section 2 of the present paper)
whose curvature and torsion are nota priori restricted.

Physically the goal of the paper is to show that gravity theories, based, first of all, on
linear connections, are compatible with the equivalence principle because of their underlying
mathematical structure.
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Mathematically the main purpose of this work is to find necessary and sufficient
conditions for the existence of local bases (coordinates) in which the components of a
derivation (of the tensor algebra over a manifold) vanish. If such special bases (frames,
called normal) exist, the problem of their holonomicity [5] is considered.

In section 2 notation and some definitions are introduced. Section 3 deals with the
above problems in a neighbourhood and section 4 investigates them at a single point. Their
connection with the equivalence principle is shown in section 5. Section 6 contains some
concluding remarks.

2. Derivations, their components, curvature and torsion

Let D be a derivation of the tensor algebra over a manifoldM [3, 4]. By [4, proposition 3.3
of chapter I] there exists a unique vector fieldX and a unique tensor fieldS of type (1, 1)

such thatD = LX + S. HereLX is the Lie derivative alongX [3, 4] andS is considered
as a derivation of the tensor algebra overM [4].

If S is a map from the set ofC1 vector fields into the tensor fields of type (1,1) and
S : X 7→ SX, then the equationDS

X = LX + SX defines a derivation of the tensor algebra
over M for any C1 vector fieldX [4]. Such a derivation will be called anS-derivation
along X and denoted for brevity simply byDX. An S-derivation is a mapD such that
D : X 7→ DX, whereDX is anS-derivation along X.

Evidently (see the above-cited proposition from [4]), every derivation of the tensor
algebra is anS-derivation along some fixed vector field and vice versa.

In this work we shall not be interested on the concrete dependence ofSX in DX =
LX + SX on X. In it as an example ofS-derivation only the covariant differentiation will
be considered. It turns out to be anS-derivation linear over functions with respect to the
vectors along which it acts.

Let {Ei, i = 1, . . . , n := dim(M)} be a (coordinate or not [5, 6]) local basis (frame)
of vector fields in the tangent toM bundle. It is holonomic (anholonomic) if the vectors
E1, . . . , En commute (do not commute) [5, 6]. Using the explicit action ofLX andSX on
tensor fields [4] one can easily deduce the explicit form of the local components ofDXT

for any C1 tensor fieldT . In particular, we have

DX(Ej ) = (WX)ijEi. (1)

Here and below all Latin indices, perhaps with some super- or subscripts, run from 1 to
n := dim(M), the usual summation rule on indices repeated on different levels is assumed,
and(WX)ij := (SX)ij −Ej(X

i)+Ci
kjX

k whereX(f ) denotes the action ofX = XkEk on the
C1 scalar functionf , i.e. X(f ) := XkEk(f ) andCi

kj define the commutators of the basic
vector fields by [Ej , Ek] = Ci

jkEi . We call (WX)ij the componentsof DX.
The change{Ei} 7→ {E′

m := Ai
mEi}, A := [Ai

m] being a non-degenerate matrix
function, implies the transformation of(WX)ij into (see equation (1))(W ′

X)ml = (A−1)mi A
j

l

(WX)ij + (A−1)mi X(Ai
l ). Introducing the matricesWX := [(WX)ij ] and W ′

X := [(W ′
X)ml ] and

putting X(A) := XkEk(A) = [XkEk(A
i
m)], we get

W ′
X = A−1{WXA + X(A)}. (2)

If ∇ is a linear connection with local components0i
jk (see, e.g., [3–5]), then∇X(Ej ) =

(0i
jkX

k)Ei [4]. Hence, we see from (1) thatDX is a covariant differentiation alongX iff

(WX)ij = 0i
jkX

k (3)
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for some functions0i
jk. Due toDS

X = LX +SX a linear connection∇ is characterized by the
mapS : X 7→ SX = 6X, 6X(Y ) := ∇X(Y ) − [X, Y ], [X, Y ] = LXY being the commutator
of the vector fieldsX andY [4].

Let D be anS-derivation andX, Y andZ be vector fields. Thecurvature operatorRD,
if D is aC1 derivation (i.e.(WX)ij areC1 functions), and thetorsion operatorT D of D are,
respectively,RD(X, Y ) := DXDY −DY DX−D[X,Y ] andT D(X, Y ) := DXY −DY X−[X, Y ].
The S-derivationD is flat (≡ curvature free) or torsion free if, respectively,RD = 0 or
T D = 0 (cf [4]).

For a linear connection∇ due to (3), we have(R∇(X, Y ))ij = Ri
jklX

kY l , (T ∇(X, Y ))i =
T i

klX
kY l , where [4] Ri

jkl and T i
kl are the components, respectively, of the curvature and

torsion tensors of∇.
Moreover, we shall look for special bases{E′

m} in which the componentsW ′
X of an

S-derivationD vanish along some or all vector fieldsX. For this purpose we have to solve
(2) with respect toA under certain conditions. If such bases (frames) exist, they will be
called normal (sometimes geodesic or Riemannian [5, 10]), as they are so named in the
theory of linear connections [4].

3. Normal frames for derivations in a neighbourhood

In this section we shall solve the problems of existence, uniqueness and holonomicity of
basis or bases{E′

m} in which the components of a given (S-)derivation vanish in some
neighbourhoodU . Such frames will be callednormal in U .

Proposition 3.1.In U for anS-derivationD there exists a basis{E′
m} such thatW ′

X = 0 for
everyX if and only if in U the S-derivationD is a flat linear connection, i.e. iffDX is a
covariant differentiation alongX with Ri

jkl = 0.

Proof. Let us fix a basis{Ei} in U. The existence of{E′
m} with W ′

X = 0, due to (2),
implies WX = −(X(A))A−1, i.e. (WX)ij = −[Xk(Ek(A

i
m))](A−1)mj which by (3), means

that D is a linear connection with local components0i
jk = −(Ek(A

i
m))(A−1)mj . Putting

WX = −(X(A))A−1 and usingX(A−1) = −A−1(X(A))A−1, we getRD = R∇ = 0.
Conversely, letD be a flat linear connection inU . Let {E0

i } be a basis atx0 ∈ U .
Define the vector fieldE′

i so that its valueE′
i |x at x ∈ U is obtained fromE0

i by the
parallel translation (transport), generated byD [3, 4], from x0 to x. As D is a flat linear
connection,E′

i |x does not depend on the path of transport and the vector fields{E′
i} are

linearly independent [4–6], i.e. they form a basis onU . It is holonomic iff D is torsion
free onU [5, 6]. By definition of a parallel translation, the vectors of the basis{E′

i} satisfy
DXE′

i = 0, which, when combined with (1), impliesW ′
X = 0. �

The main consequence of proposition 3.1 is that the (flat) linear connections are the
only S-derivations for which normal frames exist in neighbourhoods. These frames, if
any, are holonomic iff the derivation is torsion free [5, 6]. From (2) one finds that they
are connected by linear transformations with constant coefficients. By proposition 3.1 a
necessary condition for the existence of the considered special bases for anS-derivationD

is its flatness, i.e.RD = 0.

Let us turn now to the above-considered problems forS-derivationsDX along afixed
vector fieldX whenX|x 6= 0 for x ∈ U .

If {E′
m = Ai

mEi} is a basis withW ′
X = 0, then by (2) its existence is equivalent

to that of A := [Ai
m] obeying WXA + X(A) = 0. As X is fixed, the values of A

at different points are connected through the last equation iff the points lie on one and
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the same integral curve ofX. Let γy : J → M, J being aR-interval, be the integral
curve for X passing throughy ∈ M, i.e. γy(s0) = y and γ̇y(s) = X

∣∣
γy(s) , γ̇y being

the tangent toγy vector field, for s ∈ J and a fixeds0 ∈J. Along γy the equation
WXA + X(A) = 0 reduces to(dA/ds)

∣∣
γy(s) = −WX(γy(s))A(γy(s)) with general solution

A(γy(s)) = Y (s, s0; −WX ◦ γy)B(γy). Here the non-degenerate matrixB is independent
of s and Y = Y (s, s0; Z), Z being a matrix function ofs, is the unique solution of the
initial-value problem [11] dY/ds = ZY, Y

∣∣
s=s0 = 11 with 11 being the identity matrix. Thus

we have proved:

Proposition 3.2.Let DX be anS-derivation along a fixed vector fieldX( 6= 0). Then along
the integral curves ofX there exist bases in which the components ofDX vanish.

Hence normal frames exist also at any point at whichX is defined. Any two such bases
are connected by a linear transformation with a matrixA such thatX(A) = 0 (see equations
(1) and (2)).

4. Normal frames for derivations at a point

Here problems analogous to those of the previous section will be investigated in the case
describing the behavior of derivations at a given point.

At first we considerS-derivations with respect to afixed vector field, i.e. we shall deal
with a fixed derivation.

Lemma 4.1.Let

A(y) = B − 0kB(xk(y) − xk(x0)) + Bkl(y)(xk(y) − xk(x0))(x
l(y) − xl(x0))

where y, x0 ∈ M, B = constant is non-degenerate matrix, i.e. detB 6= 0, 0k are
independent ofy matrices, and the matricesBkl and their first derivatives are bounded
wheny → x0. Then there exists a neighbourhoodU of x0 in which the change of the bases
{∂/∂xi} → {E′

m = Ai
m∂/∂xi} is well defined, i.e. bijective, inU , that is detA(y) 6= 0 for

y ∈ U .

Proof. Putting U ′ := {z : 1 + ckε
k(z) > 0} with εk(y) := xk(y) − xk(x0) and

ck := (detB)−1
(
∂ detA(y)/∂εk(y)

)
ε(y)=0, ε(y) := maxk |εk(y)|, we fined detA(y) =

(detB) det[11−0kε
k(y)+O((ε(y))2)] = (detB)[1+ckε

k(y)+O((ε(y))2)]. Hence, using that
detB 6= 0, we can choose a neighbourhoodU ⊆ U ′ of x0 such that(detA(y))/(detB) > 0
for y ∈ U . (E.g., asf = O(g) for real functionsf andg means the existence ofλ ∈ R+
such that|f | 6 λ|g|, we can putU := {z : z ∈ U ′, (

∑
k |ck|)ε(z) + λ((ε(z))2) 6 1} for

someλ ∈ R+.) ConsequentlyA defines a bijective mapping between{∂/∂xi} and E′
m in

any such neighbourhoodU of x0. �
Remark. There are different local coordinates{yi} normal atx0. For instance, one class
of normal atx0 coordinates is separated through the equationxi(z) = yi(z) + bi

jk(y
j (z) −

xj (x0))(y
k(z) − xk(x0)) for [bjk] = −WX/2. More general classes of normal atx0 bases

and (holonomic) coordinates for fixedX are described in [9, propositions 8 and 9].

Proposition 4.1.Let x0 ∈ M, X be a vector field withX|x0
6= 0, andD be anS-derivation.

Then there exist normal atx0 local coordinates{yi}, i.e. such that(DX∂yi )|x0
= 0.

Proof. Let A(z), z ∈ M be defined as in lemma 4.1 forB = 11, Bkl = 0, and
(0k)

i
j = −2bi

kj = −2bi
jk ∈ R. Then by lemma 4.1 there is a neighbourhoodU of x0 in

which {E′
m = Ai

m∂/∂xi} with the matrixA(z) = 11+0k(x
k(z)−xk(x0)) form a field of bases

in U . In it, using (2), we findW ′
X(x0) = WX(x0) + 0kX

k
∣∣
x0

. As X
∣∣
x0

6= 0 we can choose
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{xi} such thatX = ∂/∂x1. Now, partially fixing {0k} by defining01 = [−2bi
j1] = WX,

we get W ′
X(x0) = 0. Hence{E′

m} is normal atx0. Besides, it is holonomic atx0 as
[E′

k, E
′
m]

∣∣
x0

= −2(b
j

km − b
j

mk)∂/∂xj
∣∣
x0

≡ 0. So, there exist local coordinates{yi} in a

neighbourhoodV of x0 such thatE′
k

∣∣
x0

= ∂/∂xk
∣∣
x0

. Evidently, in V ∩ U the coordinates

{yi} are normal atx0. �
From equations (1) and (2) we find that a basis{E′

m} in which W ′
X(x0) = 0 is obtained

from {∂/∂yi}, {yi} defined in the last proof, by a linear transformation with a matrixA

such that(X(A))|x = 0. The holonomicity of these normal frames depends on the concrete
choice ofA.

If X|x0
= 0, then a basis{E′

m} in which W ′
X(x0) = 0 exists ifWX(x0) = 0 in some basis

{Ei}, so then every basis, including the holonomic ones, will have the needed property.
Let us now turn our attention toS-derivations with respect toarbitrary vector fields.
The S-derivationD is linear at x0 if for all X and some (and hence any) basis{Ei}

we have (cf equation (3))WX(x0) = 0kX
k(x0), where the0k are constant matrices. This

means (3) is valid atx0, but may not be true atx 6= x0.

Proposition 4.2.An S-derivationD is linear at somex0 ∈ M iff there is a local basis{E′
m}

in which the components ofD along every vector field vanish atx0.

Proof. Let {xi} be local coordinates in a neighbourhood ofx0 andD be linear atx0 , i.e.
WX(x0) = 0kX

k(x0) for some0k. We search for{E′
m = Ai

m∂/∂xi} in which W ′
X(x0) = 0.

Due to (2) this is equivalent to0kA(x0) + ∂A/∂xk|x0
= 0. ChoosingA(y) as in lemma 4.1

we find A(x0) = B, ∂A/∂xk|x0
= −0kB. Hence0kA(x0) + ∂A/∂xk|x0

≡ 0 for all A

defined above, i.e. the set of vector fields{E′
m = Ai

m∂/∂xi} with [Ai
m] = A have the needed

property. By lemma 4.1 there exists a neighbourhoodU of x0 such that{E′
m|y} is a basis

at everyy ∈ U . Hence{E′
m} form a field of normal bases inU .

Conversely, letW ′
X(x0) = 0 in some {E′

m} and every X. At x0 from (2) we get
WX(x0) = −X(A)|x0

A−1(x0) = 0kX
k(x0) for 0k = −Ek(A)|x0

A−1(x0). �
From equation (2) we see that the normal frames at a given point are obtained from

one another by linear transformations whose matrices are such that the action of the basic
vectors on them vanish at the given point.

It follows from the definition of the torsion (see section 2) that if for anS-derivation
there is a local holonomic normal frame atx0, then its torsion is zero atx0. Conversely, if
the torsion vanishes atx0 and normal frames exist, then all of them are holonomic atx0.

Due to (3) the linear connections are derivations which are linear at every point at which
they are defined. Hence, by proposition 4.2, for any linear connection at any point there are
normal frames in which0i

jkX
k = 0 for every vector fieldX, so in a normal frame0i

jk = 0.
Thus, the components of a linear connection in a normal frame at a given point vanish at
that point. For symmetric linear connections this is a known result [3, 4, 6], but for non-
symmetric ones this is a new one established in 1992 in [9] and reestablished independently
in 1995 in [12].

5. Validity of the equivalence principle

The above results are physically important in connection with the equivalence principle.
According to it (see [1, 2, 13] and references therein), at least at a point, the laws of special
and general relativity coincide in a suitably chosen frame.

Let us consider a gravitational theory in which locally the gravitational field strength is
identified with the local components of some (S-)derivation. The equivalence principle for
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such a theory, when applied on some setU ⊂ M, demands the field strength to be (locally)
transformable to zero onU . Mathematically this means the (local) existence of a field of
basis (or bases) onU in which the components of the mentioned (S-)derivation vanish on
U . As this work deals with the cases whenU is a single point or a neighbourhood of a
point, the following can be concluded:

(i) All gravitational theories based on spacetimes endowed with a linear connection (e.g.,
the general relativity [1] and theU4 theory [2]) are compatible with the equivalence principle
at any fixed spacetime point. So, at any point there exist (local) inertial frames, which are
holonomic iff the connection is torsion free (as is, e.g., the case of general relativity [1]).

(ii) Any gravitational theory based on spacetime endowed with a linear connection is
compatible with the equivalence principle in a neighbourhood iff the connection is flat in it.
In particular, for flat linear connections for every point there exist neighbourhoods in which
there exist (local) inertial frames (bases) that are holonomic iff the connection is torsion
free.

(iii) The equivalence principle is important when one tries to formulate gravitational
theories on the base of some (class of) derivations. Generally, this principle will select the
theories based on linear connections (cf [13]).

(iv) In the above cases the minimal-coupling principle [1, 2], mathematically realizing
the equivalence principle in any gravitational theory, looks alike in those gravitational
theories. For instance, if there is also a metric, it can be carried out as outlined in [2].
A physical law obtained by means of the minimal coupling principle in the considered
cases identically satisfies the equivalence principle as a consequence of the underlying
mathematics of the corresponding gravitational theories.

These conclusions, when applied to the case of general relativity, are in full agreement
with those of [10], where it is argued that the equivalence principle is a theorem in
general relativity. But our results are far more general, in particular, they are valid for
any gravitational theory based on linear connections with or without torsion.

6. Conclusion

The linear connections, as we have seen, are remarkable among all derivations with their
property that in a number of sufficiently general cases considered here they are the only
derivations admitting special bases in which their components vanish.

This formalism also seems applicable to fields different from the gravitational one, viz.
at least to those described by linear connections. This suggests the idea of extending the
validity of the equivalence principle outside the gravitational interaction (cf [14]).

Elsewhere this formalism will be generalized along paths or on more general
submanifolds of spacetime.
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